
Adding Assurance to Automatically Generated Code

Ewen Denney†, Bernd Fischer‡, Johann Schumann‡

†QSS /‡RIACS, NASA Ames Research Center,{edenney,fisch,schumann }@email.arc.nasa.gov

Abstract

Code to estimate position and attitude of a spacecraft
or aircraft belongs to the most safety-critical parts of flight
software. The complex underlying mathematics and abun-
dance of design details make it error-prone and reliable im-
plementations costly. AutoFilter is a program synthesis tool
for the automatic generation of state estimation code from
compact specifications. It can automatically produce addi-
tional safety certificates which formally guarantee that each
generated program individually satisfies a set of important
safety policies. These safety policies (e.g., array-bounds,
variable initialization) form a core of properties which are
essential for high-assurance software. Here we describe the
AutoFilter system and its certificate generator and compare
our approach to the static analysis tool PolySpace.

1. Introduction

State estimation is the task of determining with the best
possible accuracy the position, attitude, and speed of a mov-
ing vehicle from potentially noisy sensor measurements.
Typical sensors are gyros, accelerometers, and star track-
ers for a spacecraft, or wheel rotation sensors for a plan-
etary rover. State estimation is the core of most guidance,
navigation, and control (GN&C) tasks; the state estimation
code is thus one of the most safety-critical, high-assurance
components of any GN&C system. However, as many mis-
sions (e.g., Mars Climate Orbiter) have shown, such code is
error-prone and difficult to develop.

AUTOFILTER [1] is an automated code-generator which
takes as input a compact, high-level description of a state
estimation task (in the form of differential equations) and
produces highly documented C or C++ code. From a user’s
point of view, the system can be seen as an intelligent com-
piler and, as is the case with compilers, the correctness of
the generated code depends on the correctness of the gen-
erator itself. However, even though AUTOFILTER has a for-
mal basis, a full verification is not feasible due to the size,
complexity, and dynamic nature of the system.

We have thus developed and implemented aproduct-
oriented certificationapproach in which checks are per-

formed on each and every generated program rather than
on the generator (i.e., AUTOFILTER) itself. We focus on
safety properties, which are generally accepted as impor-
tant for quality assurance and are used in code reviews of
high-assurance software.

Our tool uses program verification techniques based on
Hoare logic and processes logical pre- and post-conditions
statement by statement to produce proof obligations. These
are then processed further by an automatic theorem prover.
However, such techniques require additional program anno-
tations (usually loop invariants) which makes their applica-
tion very hard in practice. We overcome this obstacle by
extending AUTOFILTER to synthesizesimultaneouslythe
codeandall required annotations. This enables a fully auto-
matic certification which is transparent to the user and pro-
duces machine-readable certificates showing that the gener-
ated code does not violate the given safety policies.

2. Auto-generation of State Estimation Code

A state estimation problem is defined by (i) the sys-
tem state, which is given in the form of a vector of state
variables, (ii) the process model, which describes how the
system state evolves over time, and (iii) the measurement
model, which relates the sensor readings to the system state.
For example, a very simple planetary rover might be mod-
eled in terms of the speedvL andvR of its left and right
wheels, respectively, and the yawy of the chassis. The sys-
tem state is thus described adequately by the state vector
x = 〈vL, vR, y〉. The discrete process model is then given
as a linear functionxt+1 = Hxt+w whereH is a state tran-
sition matrix, andw is Gaussian noise. If the rover has sen-
sors which measure the speed of the wheels directly, and a
gyro to measure the yaw, the measurement model is given in
similar terms, i.e.,x = z +v for measurementsz and Gaus-
sian noisev.

An AUTOFILTER specification allows a concise formu-
lation of such models; it also includes details on the desired
software architecture. From such specifications, code is de-
rived by repeated application ofschemas. A schema can be
seen as a high-level macro or axiom which can be applied
to (sub-) problems of a certain structure, e.g., linear pro-
cess models. AUTOFILTER performs substantial symbolic



calculations (e.g., linearization, discretization, Taylor series
expansion) to make schemas applicable. When a schema
is applied, code is generated by instantiating an algorithm
skeleton which represents, e.g., an appropriate variant of a
Kalman filter algorithm. The code fragments from the in-
dividual schema applications are assembled and the entire
code is optimized and then translated into a target platform;
currently, AUTOFILTER supports C (both stand-alone and
with the Matlab and Octave libraries) and Modula-2. De-
pending on the specific platform, the necessary matrix op-
erations are mapped to library calls or to nested loops. Typ-
ically, the final code is between 300 and 800 lines of C or
C++ code including auto-generated comments.

3. Product-oriented Certification

The safety policies checked by our system describe ei-
ther language-specific or domain-specific properties which
a safe program must satisfy. A typical example of a
language-specific property (C/C++) is array-bounds safety;
violations can lead to serious flaws, as many buffer-overrun
attacks have shown. Checks for consistency of physi-
cal units or symmetry of matrices are specifically tailored
to the application domain and provide additional assur-
ance.

Our system currently handles array-bounds (i.e., array
indices must be within bounds), variable-initialization (i.e.,
variables must be initialized before use), variable-usage
(i.e., all input/output variables are used), and matrix sym-
metry. This last property is specific to the AUTOFILTER do-
main, and ensures that the code does not result in skewed
covariance matrices. However, it does not yet take numeri-
cal round-off errors into account. All of these safety prop-
erties have been identified as important by a recent study
within NASA and the aerospace industry [2].

The properties are checked using a standard approach
based on Hoare rules. Hoare rules use triples of the form
P {C} Q, meaning “if pre-conditionP holds before exe-
cution of statementC, then post-conditionQ holds after”.
For each kind of statement and for each safety property,
such a Hoare rule is given. Starting with the final postcondi-
tion true, a verification condition generator (VCG) applies
these rules backwards and computes, statement by state-
ment, first-order logic formulae (verification conditions,
VCs) which describe the safety obligations. The VCG needs
auxiliary annotations in the code (mostly loop invariants) to
perform this step automatically. However, since we know
at synthesis time(i) what form the code will take and (ii)
which safety policy is used, AUTOFILTER can generate the
appropriate annotations. The annotation generation is in-
terleaved with the code generation, and annotation skele-
tons, which are part of the schema, are instantiated in par-
allel with the algorithm skeleton. The VCs are then sim-

plified and fed into an automated theorem prover, in our
case E-Setheo. If and only if all VCs can be shown to be
true, then the property holds for the entire program. Finally,
the proofs can be double-checked by an independent proof
checker tool to yield a tamper-proof certificate. Figure 1
shows the overall architecture of the system; for more de-
tails see [3, 4].

Figure 1. Architecture of the AUTOFILTER pro-
gram synthesis system with automatic cer-
tificate generation.

4. Experimental Results

Table 1 shows the results for two specifications and the
different policies supported by AUTOFILTER. The first ex-
ample is taken from the attitude control system of NASA’s
Deep Space One mission. The second example specifies a
component in a simulation for the Space Shuttle docking
procedure at the International Space Station. The number
of generated VCs depends on the safety policy and the syn-
thesized code but for both examples E-Setheo was able to
prove all tasks. All times have been measured in seconds on
a 2GHz/2GB standard PC.

The numbers for the program size (LoC) show the size
of code itself separately from the size of the auto-generated
annotations; note that the latter varies significantly with the
safety policy and can make up a substantial fraction of the
overall code size. The synthesis timesTsynth include the
time spent on generating and simplifying the VCs, with the
latter being the dominating factor, but not the proof time
Tproof. Overall, the runtimes demonstrate that our approach
to automatic certification of safety properties is feasible.

We also compared our approach with the state-of-the-
art static analysis tool PolySpace; its runtimes are shown
in the last column of the table. The results cannot be com-
pared directly since PolySpace has a fixed built-in safety



Spec. Policy LoC Tsynth #VC Tproof TPoly

ds1 array 431 + 0 5.5 1 0.1
init 431 + 86 11.4 74 70.6

}
1348

in-use 431 + 60 8.1 21 29.5
symm 431 + 83 70.8 865 756.7 N/A

iss array 755 + 0 24.7 4 2.9
init 755 + 87 39.7 71 64.9

}
1926

in-use 755 + 59 33.3 28 32.4
symm 755 + 87 66.2 480 472.8 N/A

Table 1. Certification results and times

policy which is more comprehensive than any single policy
in our framework. However, the combination of the three
language-specific properties already provides a good ap-
proximation, but requires less time. Moreover, static anal-
ysis tools raise a large number of “false alarms”, especially
in cases with complicated array accesses, which is common
in our domain.

5. Conclusions

We have developed an extension to the AUTOFILTER

code generator that can automatically check impor-
tant safety properties for the generated code. Of course, this
is not equivalent to full functional verification so the ap-
proach does not obviate the need for testing. However, in
principle, it is complete for any given safety policy. In prac-
tice, the prover can fail to prove some provable VCs and
thus raise false alarms but their number is much lower
than typically achieved with state-of-the-art static analy-
sis tools. Our current efforts focus on integrating additional
safety properties and extending the approach to synthe-
sized code that has been modified manually.

References

[1] J. Whittle and J. Schumann. “Automating the implementation
of Kalman-filter algorithms”, 2003, in review.

[2] S. Nelson and J. Schumann. “What makes a code review trust-
worthy?,” inProc. HICSS-37. IEEE, 2004, to appear.

[3] M. Whalen, J. Schumann, and B. Fischer. “Synthesizing cer-
tified code,” inProc. FME 2002, LNCS 2391, pp. 431–450.
Springer, 2002.

[4] E. Denney and B. Fischer. “Correctness of source-level safety
policies,” in Proc. FM 2003, LNCS 2805, pp. 894–913.
Springer, 2003.


